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Transport of elastically coupled particles in an asymmetric periodic potential
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We study the motion of a chain of elastically coupled particles in an asymmetric potential. The particles are
also subject to thermal fluctuations and a stochastic driving force of zero temporal average. The main moti-
vation for investigating such systems originates from their partial analogy with a number of important models,
including stochastic ratchets, the Frenkel-Kontorova model, and the various approaches to the microscopic
description of friction and stick-slip motion having attracted great interest recently. We find that the collective
behavior of the elastically coupled particles under certain conditions leads to an average velohith is
larger than that of a single particle. The dependencae afi the coupling constant shows interesting anomalies
discussed in the papgiS1063-651X97)05905-9

PACS numbeis): 05.40+j, 02.50.Ey

I. INTRODUCTION and Ajdari[8] studied the motion of finite size walkers in a
fluctuating potential. These studies revealed that the collec-
In contrast to the macroscopic experience that transpoifve motion of particles introduces a range of new and com-
phenomena are driven by a field gradient, recent studies haieX effects compared to the behavior of a single particle.
proposed a basically different transport mechanism. The key, ©OUr goal is to investigate the motion of particles coupled
ingredients of this new transport process are broken spatidf@ SPrings with variable strength in an asymmetric periodic
symmetry and nonequilibrium fluctuations. The latter is esPotential. This allows us to study the crossover from single
sential to avoid the consequences of the second law of thef? collective ratchet motion. We consider both the case when
modynamics, while the broken spatial symmetry selects th& different driving force, i.e., correlated noise, acts on each
direction of the transport. There is no need for macroscopi®@'ticle (@synchronous drivingand when the driving is uni-
driving forces to produce nonzero flux under these circum{CM (Synchronous driving _ ,
stances. A particle moving under such conditions is called a 1NiS study may be useful not only in understanding col-

ratchet referring to Feynman’s examp[d], demonstrating Ie_ctive _behavi_or in ratchets, but also in models of friction and
i stick-slip motion, because there are many common features

that it is impossible to extract work from a single hea ) e
between the two problems. The starting point in many of the

source. ! L ; !
Assuming an underlying ratchetlike motion one can easinStUd'es of friction is the equation of motion for a setNf

explain the—at first sight paradoxical—phenomenon of masE€lastically coupled oscillators that are subjected to a periodic

transport in living cells, frequently being sustained against Jotential due to the substrate. A special case is the Frenkel-

concentration gradierte.g., in ion channels This concept Kontrova model [9], which has been used to study
gave rise to the terrmolecular motorseferring to the trans- commensurate-incommensurate phase transitions. Similar

port occurring by conformational changes of proteins on mi-mnodels are also used in the study of energy transfer in long

croscopical scale. The basic idea of ratchets may also b€-dimensional1D) chains adsorbed on a periodic sub-

applied in technology as a tool for separating mixtures ofStrate[10]. _ _
granular material§2]. The outline of the paper is as follows. In Sec. Il we intro-

The temporally correlated noise originates from interac-duce the model and discuss the type of potential and the
tion with an environment that is out of equilibrium. From a driving force that we use. The algorithm for solving the
theoretical point of view this interaction can be represente@duations is discussed in Sec. lll. The numerical results are
either as a fluctuating fordg,5] or as a fluctuating potential Presented in Sec. IV.

[2,4]. In this paper we have restricted ourselves to the case of
fluctuating force, also called theorrelation ratchet

Although most of the studies of ratchets have concen- We consider a linear chain of particles connected by
trated on the motion of a single particle, motivated by thesprings and subject to an asymmetric poteriéx) of pe-
experimental relevance of many interacting particles possibléiod | (Fig. 1). It is assumed that the particles are put in a
effects of cqllectivity have also been discussed in varioughermal bath represented by a white nofgg) and, in addi-
contexts. Dengyi and Vicsek{6] investigated the motion of tion, they are subject to an external temporally correlated
an array of correlation ratchets interacting via hard-core renoisey;(t). We neglect inertia effects, thus the equation of
pulsion. They found strong and complex dependence of thehotion of the particlé reads
average velocity on the density and size of particlebclder

Il. THE MODEL

and Pros{7] showed the existence of dynamical phase tran- - _ _ V(X)) —
sition for a rigid assembly of ratchets independently attach- PXi=K(Xi-1= 2%+ Xi4) aX; YO+ V2D (),
ing and detaching to an asymmetric potential, while Dgre D
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of a single correlation ratchéie., single particlg[3,5], and
it is independent of the particle density.

In the limit whenk— <0 the particles are strongly coupled,
every particle “feels” the forces exerted on any other par-
ticle. As a consequence, the motion of the particles is uni-
form and given by the motion of a single particle in an ef-
fective potential

1 N
— > V(x+ia)

Ves(X) = N =,

FIG. 1. Schematic representation of our system.

at effective noise strengths. This effective potential depends

wherek is the spring constant arfdl is the temperature. The ©N the ratio of the period of the chain and the period of the
initial length of the springs does not enter Eql), but it ratchet_pot_er_wtlz_il. ID is rational the system is commensurate,
sets the density of particles: on average a/l particles fall otherwise it is incommensurate. Commensurability, together

into a period of the potential. We set the physical scales ofVith the synchronous or asynchronous nature of the driving,
the problem by puttingy=1 andV .~ Vmin=0(1). The determines the behavior of the strongly coupled system by
max min .

guantity of our major concern is the average velocity defined:ance"at'on of various terms in E{).

as the temporal average of the system’s mean velocity In the commensurate case the effective potential is also a
ratchet potential, but with a smaller amplitude. In this case a

1 TN finite current is possible in a finite system, but in the ther-
v=lim = > > xi(1), modynamic limit (N—o,N/L=g) the current vanishes,
TN&= = since the amplitudes of the effective thermal noise and driv-
ing scale asN~ 1. For synchronous driving, i.e., when the
whereN is the number of particles in a system of length same external force acts on every particle, the driving does
The average velocity is a macroscopic quantity which can b@ot cancel out, so the system becomes equivalent to a
measured in a real experiment in contrast to the position and=0 correlation ratchet in an effective potential. Nonzero

T—oo

velocity of individual particles. current is possible provided the driving noise is strong
As a ratchet potential we have used a differentiable poenough.
tential of periodl =1 If the period of the chain and of the potential are incom-
mensurate then in the thermodynamic limit the potential can-
V(x)= = 3sin(2mx) — sin(4mX). (2)  cels out {.= cons}, so that the current is zero, even for

synchronous driving.
The span of this potential is about 1.1 and its asymmetry |n the case of intermediate spring constants the behavior
parameter(the ratio of the downhill region to the uphill re- js governed by the interaction of the effective parameters
gion) is around 1/4. Motion in the potential E(R) has been  which leads to nontrivial cooperative motion. We are going
studied by several authof41,12 and it has an advantage to investigate the behavior of the system in this regime by
over the sawtooth potential: it is easier to treat numericalljhumerically integrating Eq(1). In particular, we are inter-
the movement in a differentiable potential thanin a pOtentiabsted in medium temperature and driving Strength regimes

with discontinuous derivatives. since for large values db or of the driving strength diffu-
~ For synchronous driving we used a simple harmonic drivsjon dominates and in the opposite limit the particles are not
ing force capable of hopping to the neighboring potential well. This
region has been of major interest in previous studies since
yi(t)=Acoswt (3 potential applications to biology require the fluctuations to

o ) be in the intermediate range.

and fo_r nonsynchronous driving we choose |_ndependent Since the two models under consideration have ten pa-

Ornstein-UhlenbeckOU) processes for each particle rameters each the numerical exploration of the whole param-
eter space would have needed a prohibitively large amount

y:i(\/ﬁ (D)—y) (4) of computer time. Three of the parameters fix the physical
T g v scales(mass, length, and timebut the rest can have any

value. Many of the parameter sets correspond to trivial or

The noises{ and » are uncorrelated both in space and inpreviously studied behavior of the system, which is not in-

time, (&(1)&(t"))=(ni(t) n;(t"))=6;;6(t—t"), yielding a  teresting from our point of view. The considerations we have

temporally correlated but spatially uncorrelated fluctuatingpresented earlier in this section allow us to reduce the size of

forcey;(t): (yi(t)y;(t"))=6;(Q/7)eI""V'l". Itis important  the parameter region to be scanned and thus make our goal

to note that both of these driving forces have zero averageachievable.

The finite velocity of the particles will develop due to the

asymmetry in the potentiaf(x). Ill. THE ALGORITHM

Let us review the two limiting cases for the values of the .
spring constank. If k=0, the particles are decoupled, the ~ Equations (1) and (4) [or (3)] are of the form of
behavior of the system reduces to the much studied behaviar=Au+ #. If A was a constant then by diagonaliziAgthe
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model would simply reduce to an OU process. In our case 1.0 , . — .
A does depend om and the equation can be only locally e
mapped into an OU process. For a small number of vector 0.8
components inu it is worth diagonalizing matrixA each
time step, perform an infinitesimal OU step, and then trans- 0.6
form the result back into real spa¢&3]. Since the linear >
chain in our model may consist of many particles this algo- 04
rithm would be very time consuming. Instead we exploit the
fact that half of A (the equations fory’s) are already in 0.2
diagonal form and thus they can be solved exactly 0.0
1/2 ! L ! ! ! !
y(t+At)=y(t)e*A“T+P 3(1_872At/7-) )' 0 2 4 6 8 10 12 14
A

whereP (o) denotes a random number drawn from a Gauss-
ian distribution with zero average and variancdn the case FIG. 2. The current vs the synchronous driving amplitude for
of synchronous driving;(t) is given by Eq.(3) so only the various couplings.
equations foix need to be integrated.

The equation of motior(1) was solved using ad(t%) lyze the dependence on the density and some dynamical as-
method, which is a variant of the numeric scheme used bpects of the motion. In all cases described below we used
Schneider and StoJtL4] for integrating stochastic partial dif- D =0.1 to ensure that thermal fluctuations are large enough,

ferential equations. The method for the case of asynchronou@t are not too strong, which would result in an unbounded
driving reads diffusion of the particles.

For synchronous drivinfEgs.(1) and(3), o= 1] with no
) T At coupling k=0, solid line in Fig. 2 we obtained a typical
AXT A K(Xi— 1= 2%+ Xi1) gV + 32 (1-e7 0y velocity-driving curve of a thermally activated, periodically
driven single ratchef15]. Using larger coupling the curve
At flattens out, mostly velocity decrease can be observed. Nev-
AxV— A0+ 7[k(Axi@l+ Ax(9)) = (2k+ d2V) Ax{?] ertheless, at low driving strengtifelow A=2) there is a
region where the velocitincreasesas is shown in Fig. 3. At
this particular set of parameters the maximal velocity is

_ A~ 2AtT — At/ _
+P[VQr(2At/T—e tde 3)] reached ak=3. In the uncoupled=0) case the velocity
+P(y2DAY) was extremely small, so, in this case, it is appropriate to

speak about coupling activated motion in analogy with ther-
(5) mal noise activated motion for a single stochastically driven
ratchet[3].

The first assignment is a simple Euler integration step, !N the case of asynchronous driving<{1), to obtain a

then the next order corrections are added to improve thglobal picture of the behavior, we measuredh an incom-
method. The first stochastic part mXi(l) is due to the ran- mensurate systerfFig. 4). Increasing the driving amplitude

domness in the driving while the second part originates fronﬂ]e ;/elo?t)l/ at small c%uphnhg stLengtI(lse., n_early |r_1depetn-d.
the white thermal noise. ent particlesincreased as has been seen in previous studies

of the single particle motiorf3,11]. Introducing stronger
coupling between the particles the velocity decreased as ex-

Xi(t+ At —x;(t)+ AxY

IV. NUMERICAL RESULTS

The numerical solution of Eql) was performed for a 0.2 . , . ,
system of sizd incorporatingN particles. We have applied
periodic boundary conditions. The integration time step was
At=0.01 which allowed us to integrate until reasonably 015 1
large times {=10°). We have checked the stability of our f"@.
numerical scheme by using smaller time steps, but they > olF g V\ i
yielded no visible difference in the data. Most of our inves- &
tigations were performed &t=10. The results were checked !
against finite size effects by reproducing them on a larger 0.05 | f \hﬂ\wm i
(L=100) system. In this case the actual data changed only a
by a small amount, but the overall qualitative behavior re- 0.0 ! . L
mained the same. We have concentrated on investigating the 0 5 10 15

stationary velocityy as a function of various parameters of
the model. The values of the parameters were chosen to rep-
resent the regions where we expect the most interesting phe-
nomena to be present. First we study the effect of varying the FIG. 3. The current as a function of spring constait for
driving amplitude and the coupling constdgtthen we ana- A=1.9.



5182 Z. CSAHd<, F. FAMILY, AND T. VICSEK 55

0.025 T o 0.025 T T T T o
“‘"‘M 2 g; O kes
0.02 | 0.02 f 1
\“\.\h 0 &0 o
T 0.015 | ° .
- > °
0.01 ° 1
0005 uunuDS 8 8 a 800 o0 g o n-
o t Zﬂ Pag0
0.0 j0° 1 L 1

0.0 0.2 0.4 0.6 0.8 1.0

k Q
_FIG. 4. The current vs the coupling for various asynchronous  F|G. 6. The current as a function of driving amplitude for the
driving amplitudes. uncoupled casek=0, circleg and near resonant couplingg 5,
squarep

pected from previous discussions. In the rakge2 -5 one
can observe a resonance in the velocity which comes frortential wells no matter whag is, the coupling reduces the
collective motion of the particles, as we show later. For largeeffective temperature but not the potential yielding a smaller
driving (large Q) this resonance is not able to compensateaverage velocity. Also, for large coupling the current goes to
the decrease in the velocity. But for sufficiently small driving zero even in the incommensurate case, so no resonance can
one can observe aanhancemenbf the velocity (Fig. 5, develop.
Q=0.3). The maximum velocity for this set of parametersis In Fig. 6 we show the current for two different couplings
about twice the velocity produced by uncoupled particles. Inas a function of the driving amplitude in order to demon-
Fig. 5 we have also plotted the data obtained for the samstrate the dependence of the enhancement on the driving. In
parameters except that=1 (N=L), i.e., for a commensu- agreement with Fig. 4 the velocity enhancement is seen for
rate system. For that case the velocity goes to zero already’s smaller than 0.45 and no enhancement is observed for
for rather small values d, whereas for the incommensurate larger driving.
system the velocity shows a resonant peak. We have seen that the commensurability has an effect on
The observed resonance is a stochastic resojdétand the resonance. In order to study this effect we put a varying
its appearance is due to the interacting time scales of theumber of particles in our system and measured the station-
correlation in the driving, the overdamped harmonic motion,ary velocity. The size of the system is agir 10, so zero
and the motion in the potential. Consequently there must beurrent is expected at multiples of 2 and 5. In fact, a vanish-
a shift in the position of the resonance with the changing oing current was observed mostly at multiples of 10 and at a
the driving strength. This shift can be easily seen in Fig. 4smaller amount at 15, 25, and 8big. 7).
The peak current at the resonance becomes larger with in- To characterize the dynamics of the resonant peak seen in
creasing driving, but over some critic@ there is no en- Fig. 5 we studied the correlation function of the distance
hancement compared to the uncoupled case. The resonaneetween neighboring particles. The distance function is de-
may occur only at medium coupling strengths and in incom{ined as
mensurate systems. The reason for this is that for a small

coupling the particles are mostly confined to their own po- Ai(t) =X 41 (1) = x;(1),
T %‘; T g Ne37 0.007 T T T T T T T T T
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FIG. 5. The currenv as a function of spring constakt for FIG. 7. The current for various numbers of particles in a system

Q=0.3. of sizeL=10.
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- - - sponds to a traveling wavelike motion of the chain, as op-

0.005 __ E’i posed to the biased random walks of the particles in the case
N — of k=0. This shows that the observed stochastic resonance is

a collective effect of the coupled particles. We have seen

- 0.0 similar resonance not only by changing the coupling strength
= but also via changing the correlation timeof the driving
Q . colored noise. In fact, the system can be tuned into its reso-
0005F oo™ nant state by many parameter combinations provided they
result in characteristic time scales of the same order of mag-
nitude.
-0.01 ! ! . . Having explored the most relevant subset of the parameter
0.1 1 10 100 1000 space our results show that using a suitable coupling between

individual particles in an asymmetric potential it is possible
to enhance their average velocity. For the case of synchro-
nous driving (harmonic external forgewe show a regime
FIG. 8. The correlation function of two distances between threayhere the motion in the system is activated by coupling the
consecutive particlefscy(t)] for various couplings. particles together, which is similar to the original noise acti-
vated ratchet motion. For the case of asynchronous driving
and it is straightforward to define a set of correlation fU”C'(externaI colored noigewe also observe enhancement, but
tions as only for relatively small driving amplitudes. Although this
effect is not as significant as the one in the synchronous case,
Gi(D={Ai(D)Ao(1)) = (Ai(1) {Ao(1)). it may be of Iarggr importance for models mybiological mo-
So, co(t) gives the autocorrelation function of the distance!’on, Where the driving is intrinsically stochastic.
between two particles anch(r) gives the correlation func-
tion of the two distances between three consecutive particles.
In Fig. 8 we show the correlation functiom (t) for some The authors thank 1. Dengi for useful discussions and
values ofk using the same parameters as in Figa§ynchro- comments. This work was supported by the Office of Naval
nous driving. For the resonant value & (k=5) positive  Research, the US-Hungary Joint Fund No. 352 and by the
temporal correlation develops, while in the other cases théA Magyar Tudomanyet” foundation of the Hungarian
correlation is negative, meaning that the motion of a particleCredit Bank. One of the authofZ. Cs) is grateful for the
is mostly localized oscillation. The positive correlation peakhospitality extended to him during his stay at Emory Univer-
appears not at=0 but at some positive time which corre- sity.
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