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Transport of elastically coupled particles in an asymmetric periodic potential
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We study the motion of a chain of elastically coupled particles in an asymmetric potential. The particles are
also subject to thermal fluctuations and a stochastic driving force of zero temporal average. The main moti-
vation for investigating such systems originates from their partial analogy with a number of important models,
including stochastic ratchets, the Frenkel-Kontorova model, and the various approaches to the microscopic
description of friction and stick-slip motion having attracted great interest recently. We find that the collective
behavior of the elastically coupled particles under certain conditions leads to an average velocityv which is
larger than that of a single particle. The dependence ofv on the coupling constant shows interesting anomalies
discussed in the paper.@S1063-651X~97!05905-9#

PACS number~s!: 05.40.1j, 02.50.Ey
po
a
ke
at
es
he
th
p
m
d

a

sil
as
t

m

o

ac
a
te
l
e

en
h
ib
u
f
re
th

an
ch

a
lec-
m-
.
ed
dic
gle
hen
ch

ol-
nd
res
the

dic
kel-
y
ilar
ong
b-

o-
the
e
are

by

a

ted
of
I. INTRODUCTION

In contrast to the macroscopic experience that trans
phenomena are driven by a field gradient, recent studies h
proposed a basically different transport mechanism. The
ingredients of this new transport process are broken sp
symmetry and nonequilibrium fluctuations. The latter is
sential to avoid the consequences of the second law of t
modynamics, while the broken spatial symmetry selects
direction of the transport. There is no need for macrosco
driving forces to produce nonzero flux under these circu
stances. A particle moving under such conditions is calle
ratchet, referring to Feynman’s example@1#, demonstrating
that it is impossible to extract work from a single he
source.

Assuming an underlying ratchetlike motion one can ea
explain the—at first sight paradoxical—phenomenon of m
transport in living cells, frequently being sustained agains
concentration gradient~e.g., in ion channels!. This concept
gave rise to the termmolecular motorsreferring to the trans-
port occurring by conformational changes of proteins on
croscopical scale. The basic idea of ratchets may also
applied in technology as a tool for separating mixtures
granular materials@2#.

The temporally correlated noise originates from inter
tion with an environment that is out of equilibrium. From
theoretical point of view this interaction can be represen
either as a fluctuating force@3,5# or as a fluctuating potentia
@2,4#. In this paper we have restricted ourselves to the cas
fluctuating force, also called thecorrelation ratchet.

Although most of the studies of ratchets have conc
trated on the motion of a single particle, motivated by t
experimental relevance of many interacting particles poss
effects of collectivity have also been discussed in vario
contexts. Dere´nyi and Vicsek@6# investigated the motion o
an array of correlation ratchets interacting via hard-core
pulsion. They found strong and complex dependence of
average velocity on the density and size of particles. Ju¨licher
and Prost@7# showed the existence of dynamical phase tr
sition for a rigid assembly of ratchets independently atta
ing and detaching to an asymmetric potential, while Dere´nyi
551063-651X/97/55~5!/5179~5!/$10.00
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and Ajdari @8# studied the motion of finite size walkers in
fluctuating potential. These studies revealed that the col
tive motion of particles introduces a range of new and co
plex effects compared to the behavior of a single particle

Our goal is to investigate the motion of particles coupl
via springs with variable strength in an asymmetric perio
potential. This allows us to study the crossover from sin
to collective ratchet motion. We consider both the case w
a different driving force, i.e., correlated noise, acts on ea
particle~asynchronous driving! and when the driving is uni-
form ~synchronous driving!.

This study may be useful not only in understanding c
lective behavior in ratchets, but also in models of friction a
stick-slip motion, because there are many common featu
between the two problems. The starting point in many of
studies of friction is the equation of motion for a set ofN
elastically coupled oscillators that are subjected to a perio
potential due to the substrate. A special case is the Fren
Kontrova model @9#, which has been used to stud
commensurate-incommensurate phase transitions. Sim
models are also used in the study of energy transfer in l
one-dimensional~1D! chains adsorbed on a periodic su
strate@10#.

The outline of the paper is as follows. In Sec. II we intr
duce the model and discuss the type of potential and
driving force that we use. The algorithm for solving th
equations is discussed in Sec. III. The numerical results
presented in Sec. IV.

II. THE MODEL

We consider a linear chain of particles connected
springs and subject to an asymmetric potentialV(x) of pe-
riod l ~Fig. 1!. It is assumed that the particles are put in
thermal bath represented by a white noisej i(t) and, in addi-
tion, they are subject to an external temporally correla
noiseyi(t). We neglect inertia effects, thus the equation
motion of the particlei reads

g ẋi5k~xi2122xi1xi11!2
]V~xi !

]xi
1yi~ t !1A2Dj i~ t !,

~1!
5179 © 1997 The American Physical Society
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wherek is the spring constant andD is the temperature. The
initial length of the springsa does not enter Eq.~1!, but it
sets the density of particles: on average%5a/ l particles fall
into a period of the potential. We set the physical scales
the problem by puttingg51 andVmax2Vmin5O(1). The
quantity of our major concern is the average velocity define
as the temporal average of the system’s mean velocity

v5 lim
T→`

1

TN (
t51

T

(
i51

N

ẋi~ t !,

whereN is the number of particles in a system of lengthL.
The average velocity is a macroscopic quantity which can
measured in a real experiment in contrast to the position a
velocity of individual particles.

As a ratchet potential we have used a differentiable p
tential of periodl51

V~x!52 1
2 sin~2px!2 1

8 sin~4px!. ~2!

The span of this potential is about 1.1 and its asymmet
parameter~the ratio of the downhill region to the uphill re-
gion! is around 1/4. Motion in the potential Eq.~2! has been
studied by several authors@11,12# and it has an advantage
over the sawtooth potential: it is easier to treat numerical
the movement in a differentiable potential than in a potenti
with discontinuous derivatives.

For synchronous driving we used a simple harmonic driv
ing force

yi~ t !5Acosvt ~3!

and for nonsynchronous driving we choose independe
Ornstein-Uhlenbeck~OU! processes for each particle

ẏi5
1

t
„A2Qh i~ t !2yi…. ~4!

The noisesj and h are uncorrelated both in space and in
time, ^j i(t)j j (t8)&5^h i(t)h j (t8)&5d i jd(t2t8), yielding a
temporally correlated but spatially uncorrelated fluctuatin
forceyi(t): ^yi(t)yj (t8)&5d i j (Q/t)e

2ut2t8u/t. It is important
to note that both of these driving forces have zero averag
The finite velocity of the particles will develop due to the
asymmetry in the potentialV(x).

Let us review the two limiting cases for the values of th
spring constantk. If k50, the particles are decoupled, the
behavior of the system reduces to the much studied behav

FIG. 1. Schematic representation of our system.
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of a single correlation ratchet~i.e., single particle! @3,5#, and
it is independent of the particle density.

In the limit whenk→` the particles are strongly coupled
every particle ‘‘feels’’ the forces exerted on any other pa
ticle. As a consequence, the motion of the particles is u
form and given by the motion of a single particle in an e
fective potential

Veff~x!5
1

N (
i51

N

V~x1 ia !

at effective noise strengths. This effective potential depe
on the ratio of the period of the chain and the period of
ratchet potential. If% is rational the system is commensura
otherwise it is incommensurate. Commensurability, toget
with the synchronous or asynchronous nature of the drivi
determines the behavior of the strongly coupled system
cancellation of various terms in Eq.~1!.

In the commensurate case the effective potential is als
ratchet potential, but with a smaller amplitude. In this cas
finite current is possible in a finite system, but in the th
modynamic limit (N→`,N/L5%) the current vanishes
since the amplitudes of the effective thermal noise and d
ing scale asN21. For synchronous driving, i.e., when th
same external force acts on every particle, the driving d
not cancel out, so the system becomes equivalent t
D50 correlation ratchet in an effective potential. Nonze
current is possible provided the driving noise is stro
enough.

If the period of the chain and of the potential are inco
mensurate then in the thermodynamic limit the potential c
cels out (Veff5 const!, so that the current is zero, even fo
synchronous driving.

In the case of intermediate spring constants the beha
is governed by the interaction of the effective paramet
which leads to nontrivial cooperative motion. We are goi
to investigate the behavior of the system in this regime
numerically integrating Eq.~1!. In particular, we are inter-
ested in medium temperature and driving strength regim
since for large values ofD or of the driving strength diffu-
sion dominates and in the opposite limit the particles are
capable of hopping to the neighboring potential well. Th
region has been of major interest in previous studies si
potential applications to biology require the fluctuations
be in the intermediate range.

Since the two models under consideration have ten
rameters each the numerical exploration of the whole par
eter space would have needed a prohibitively large amo
of computer time. Three of the parameters fix the physi
scales~mass, length, and time! but the rest can have an
value. Many of the parameter sets correspond to trivial
previously studied behavior of the system, which is not
teresting from our point of view. The considerations we ha
presented earlier in this section allow us to reduce the siz
the parameter region to be scanned and thus make our
achievable.

III. THE ALGORITHM

Equations ~1! and ~4! @or ~3!# are of the form of
u̇5Au1h. If A was a constant then by diagonalizingA the
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55 5181TRANSPORT OF ELASTICALLY COUPLED PARTICLES . . .
model would simply reduce to an OU process. In our c
A does depend onu and the equation can be only local
mapped into an OU process. For a small number of ve
components inu it is worth diagonalizing matrixA each
time step, perform an infinitesimal OU step, and then tra
form the result back into real space@13#. Since the linear
chain in our model may consist of many particles this alg
rithm would be very time consuming. Instead we exploit t
fact that half ofA ~the equations fory’s! are already in
diagonal form and thus they can be solved exactly

y~ t1Dt !5y~ t !e2Dt/t1PS FQt ~12e22Dt/t!G1/2D ,
whereP(s) denotes a random number drawn from a Gau
ian distribution with zero average and variances. In the case
of synchronous drivingyi(t) is given by Eq.~3! so only the
equations forx need to be integrated.

The equation of motion~1! was solved using anO(t3)
method, which is a variant of the numeric scheme used
Schneider and Stoll@14# for integrating stochastic partial dif
ferential equations. The method for the case of asynchron
driving reads

Dxi
~0!←DtS k~xi2122xi1xi11!2] iV1

t

Dt
~12e2Dt/t!yi D

Dxi
~1!←Dxi

~0!1
Dt

2
@k~Dxi21

~0! 1Dxi11
~0! !2~2k1] i

2V!Dxi
~0!#

1P@AQt~2Dt/t2e22Dt/t14e2Dt/t23!#

1P~A2DDt !

xi~ t1Dt !←xi~ t !1Dxi
~1! . ~5!

The first assignment is a simple Euler integration st
then the next order corrections are added to improve
method. The first stochastic part ofDxi

(1) is due to the ran-
domness in the driving while the second part originates fr
the white thermal noise.

IV. NUMERICAL RESULTS

The numerical solution of Eq.~1! was performed for a
system of sizeL incorporatingN particles. We have applied
periodic boundary conditions. The integration time step w
Dt50.01 which allowed us to integrate until reasonab
large times (t.105). We have checked the stability of ou
numerical scheme by using smaller time steps, but t
yielded no visible difference in the data. Most of our inve
tigations were performed atL510. The results were checke
against finite size effects by reproducing them on a lar
(L5100) system. In this case the actual data changed
by a small amount, but the overall qualitative behavior
mained the same. We have concentrated on investigating
stationary velocityv as a function of various parameters
the model. The values of the parameters were chosen to
resent the regions where we expect the most interesting
nomena to be present. First we study the effect of varying
driving amplitude and the coupling constantk, then we ana-
e
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pects of the motion. In all cases described below we u
D50.1 to ensure that thermal fluctuations are large enou
but are not too strong, which would result in an unbound
diffusion of the particles.

For synchronous driving@Eqs.~1! and~3!, v51# with no
coupling (k50, solid line in Fig. 2! we obtained a typical
velocity-driving curve of a thermally activated, periodical
driven single ratchet@15#. Using larger coupling the curve
flattens out, mostly velocity decrease can be observed. N
ertheless, at low driving strengths~below A.2) there is a
region where the velocityincreases, as is shown in Fig. 3. At
this particular set of parameters the maximal velocity
reached atk.3. In the uncoupled (k50) case the velocity
was extremely small, so, in this case, it is appropriate
speak about coupling activated motion in analogy with th
mal noise activated motion for a single stochastically driv
ratchet@3#.

In the case of asynchronous driving (t51), to obtain a
global picture of the behavior, we measuredv in an incom-
mensurate system~Fig. 4!. Increasing the driving amplitude
the velocity at small coupling strengths~i.e., nearly indepen-
dent particles! increased as has been seen in previous stu
of the single particle motion@3,11#. Introducing stronger
coupling between the particles the velocity decreased as

FIG. 2. The current vs the synchronous driving amplitude
various couplings.

FIG. 3. The currentv as a function of spring constantk for
A51.9.
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5182 55Z. CSAHÓK, F. FAMILY, AND T. VICSEK
pected from previous discussions. In the rangek.2–5 one
can observe a resonance in the velocity which comes f
collective motion of the particles, as we show later. For la
driving ~largeQ) this resonance is not able to compens
the decrease in the velocity. But for sufficiently small drivin
one can observe anenhancementof the velocity ~Fig. 5,
Q50.3). The maximum velocity for this set of parameters
about twice the velocity produced by uncoupled particles
Fig. 5 we have also plotted the data obtained for the sa
parameters except that%51 (N5L), i.e., for a commensu
rate system. For that case the velocity goes to zero alre
for rather small values ofk, whereas for the incommensura
system the velocity shows a resonant peak.

The observed resonance is a stochastic resonance@16# and
its appearance is due to the interacting time scales of
correlation in the driving, the overdamped harmonic moti
and the motion in the potential. Consequently there mus
a shift in the position of the resonance with the changing
the driving strength. This shift can be easily seen in Fig
The peak current at the resonance becomes larger with
creasing driving, but over some criticalQ there is no en-
hancement compared to the uncoupled case. The reson
may occur only at medium coupling strengths and in inco
mensurate systems. The reason for this is that for a s
coupling the particles are mostly confined to their own p

FIG. 4. The current vs the coupling for various asynchrono
driving amplitudes.

FIG. 5. The currentv as a function of spring constantk for
Q50.3.
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tential wells no matter what% is, the coupling reduces th
effective temperature but not the potential yielding a sma
average velocity. Also, for large coupling the current goes
zero even in the incommensurate case, so no resonance
develop.

In Fig. 6 we show the current for two different coupling
as a function of the driving amplitude in order to demo
strate the dependence of the enhancement on the drivin
agreement with Fig. 4 the velocity enhancement is seen
Q’s smaller than 0.45 and no enhancement is observed
larger driving.

We have seen that the commensurability has an effec
the resonance. In order to study this effect we put a vary
number of particles in our system and measured the stat
ary velocity. The size of the system is againL510, so zero
current is expected at multiples of 2 and 5. In fact, a vani
ing current was observed mostly at multiples of 10 and a
smaller amount at 15, 25, and 35~Fig. 7!.

To characterize the dynamics of the resonant peak see
Fig. 5 we studied the correlation function of the distan
between neighboring particles. The distance function is
fined as

D i~ t !5xi11~ t !2xi~ t !,

s FIG. 6. The current as a function of driving amplitude for th
uncoupled case (k50, circles! and near resonant coupling (k55,
squares!.

FIG. 7. The current for various numbers of particles in a syst
of sizeL510.
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55 5183TRANSPORT OF ELASTICALLY COUPLED PARTICLES . . .
and it is straightforward to define a set of correlation fun
tions as

ci~ t !5^D i~ t !D0~ t !&2^D i~ t !&^D0~ t !&.

So, c0(t) gives the autocorrelation function of the distan
between two particles andc1(r ) gives the correlation func
tion of the two distances between three consecutive partic
In Fig. 8 we show the correlation functionc1(t) for some
values ofk using the same parameters as in Fig. 5~asynchro-
nous driving!. For the resonant value ofk (k55) positive
temporal correlation develops, while in the other cases
correlation is negative, meaning that the motion of a part
is mostly localized oscillation. The positive correlation pe
appears not att50 but at some positive time which corre

FIG. 8. The correlation function of two distances between th
consecutive particles@c1(t)# for various couplings.
et
-

s.

e
e

sponds to a traveling wavelike motion of the chain, as o
posed to the biased random walks of the particles in the c
of k50. This shows that the observed stochastic resonan
a collective effect of the coupled particles. We have se
similar resonance not only by changing the coupling stren
but also via changing the correlation timet of the driving
colored noise. In fact, the system can be tuned into its re
nant state by many parameter combinations provided t
result in characteristic time scales of the same order of m
nitude.

Having explored the most relevant subset of the param
space our results show that using a suitable coupling betw
individual particles in an asymmetric potential it is possib
to enhance their average velocity. For the case of sync
nous driving ~harmonic external force! we show a regime
where the motion in the system is activated by coupling
particles together, which is similar to the original noise ac
vated ratchet motion. For the case of asynchronous driv
~external colored noise!, we also observe enhancement, b
only for relatively small driving amplitudes. Although thi
effect is not as significant as the one in the synchronous c
it may be of larger importance for models of biological m
tion, where the driving is intrinsically stochastic.
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